Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Neurotrauma ; 41(1-2): 59-72, 2024 01.
Article in English | MEDLINE | ID: mdl-37551969

ABSTRACT

Mild traumatic brain injury (mTBI) accounts for 70-90% of all TBI cases. Lipid metabolites have important roles in plasma membrane biogenesis, function, and cell signaling. As TBI can compromise plasma membrane integrity and alter brain cell function, we sought to identify circulating phospholipid alterations after mTBI, and determine if these changes were associated with clinical outcomes. Patients with mTBI (Glasgow Coma Score [GCS] ≥13 and loss of consciousness <30 min) were recruited. A total of 84 mTBI subjects were enrolled after admission to a level I trauma center, with the majority having evidence of traumatic intracranial hemorrhage on brain computed tomography (CT). Plasma samples were collected within 24 h of injury with 32 mTBI subjects returning at 3 months after injury for a second plasma sample to be collected. Thirty-five healthy volunteers were enrolled as controls and had a one-time blood draw. Lipid metabolomics was performed on plasma samples from each subject. Fold change of selected lipid metabolites was determined. Multivariable regression models were created to test associations between lipid metabolites and discharge and 6-month Glasgow Outcomes Scale-Extended (GOSE) outcomes (dichotomized between "good" [GOSE ≥7] and "bad" [GOSE ≤6] functional outcomes). Plasma levels of 31 lipid metabolites were significantly associated with discharge GOSE using univariate models; three of these metabolites were significantly increased, while 14 were significantly decreased in subjects with good outcomes compared with subjects with poor outcomes. In multivariable logistic regression models, higher circulating levels of the lysophospholipids (LPL) 1-linoleoyl-glycerophosphocholine (GPC) (18:2), 1-linoleoyl-GPE (18:2), and 1-linolenoyl-GPC (18:3) were associated with both good discharge GOSE (odds ratio [OR] 12.2 [95% CI 3.35, 58.3], p = 5.23 × 10-4; OR 9.43 [95% CI 2.87, 39.6], p = 7.26 × 10-4; and OR 5.26 [95% CI 1.99, 16.7], p = 2.04 × 10-3, respectively) and 6-month (OR 4.67 [95% CI 1.49, 17.7], p = 0.013; OR 2.93 [95% CI 1.11, 8.87], p = 0.039; and OR 2.57 [95% CI 1.08, 7.11], p = 0.046, respectively). Compared with healthy volunteers, circulating levels of these three LPLs were decreased early after injury and had normalized by 3 months after injury. Logistic regression models to predict functional outcomes were created by adding each of the described three LPLs to a baseline model that included age and sex. Including 1-linoleoyl-GPC (18:2) (8.20% improvement, p = 0.009), 1-linoleoyl-GPE (18:2) (8.85% improvement, p = 0.021), or 1-linolenoyl-GPC (18:3) (7.68% improvement, p = 0.012), significantly improved the area under the curve (AUC) for predicting discharge outcomes compared with the baseline model. Models including 1-linoleoyl-GPC (18:2) significantly improved AUC for predicting 6-month outcomes (9.35% improvement, p = 0.034). Models including principal components derived from 25 LPLs significantly improved AUC for prediction of 6-month outcomes (16.0% improvement, p = 0.020). Our results demonstrate that higher plasma levels of LPLs (1-linoleoyl-GPC, 1-linoleoyl-GPE, and 1-linolenoyl-GPC) after mTBI are associated with better functional outcomes at discharge and 6 months after injury. This class of phospholipids may represent a potential therapeutic target.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries , Humans , Brain Concussion/diagnostic imaging , Brain Concussion/complications , Brain Injuries/complications , Glasgow Outcome Scale , Lysophospholipids , Lipids , Brain Injuries, Traumatic/complications , Glasgow Coma Scale
2.
Res Sq ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014126

ABSTRACT

Background: The INSPIRE randomized clinical trial demonstrated that a high protein diet (HPRO) combined with neuromuscular electrical stimulation (NMES) attenuates muscle atrophy and may improve functional outcomes after aSAH. Using an untargeted metabolomics approach, we sought to identify specific metabolites mediating these effects. Methods: Blood samples were collected from subjects on admission prior to randomization to either standard of care (SOC; N=12) or HPRO+NMES (N=12) and at 7 days as part of the INSPIRE protocol. Untargeted metabolomics were performed for each plasma sample. Paired fold changes were calculated for each metabolite among subjects in the HPRO+NMES group at baseline and 7 days after intervention. Changes in metabolites from baseline to 7 days were compared for the HPRO+NMES and SOC groups. Sparse partial least squared discriminant analysis (sPLS-DA) identified metabolites discriminating each group. Pearson's correlation coefficients were calculated between each metabolite and total protein per day, nitrogen balance, and muscle volume Multivariable models were developed to determine associations between each metabolite and muscle volume. Results: A total of 18 unique metabolites were identified including pre and post treatment and differentiating SOC vs HPRO+NMES. Of these, 9 had significant positive correlations with protein intake: N-acetylserine (ρ=0.61, P=1.56×10-3), N-acetylleucine (ρ=0.58, P=2.97×10-3), ß-hydroxyisovaleroylcarnitine (ρ=0.53, P=8.35×10-3), tiglyl carnitine (ρ=0.48, P=0.0168), N-acetylisoleucine (ρ=0.48, P=0.0183), N-acetylthreonine (ρ=0.47, P=0.0218), N-acetylkynurenine (ρ=0.45, P=0.0263), N-acetylvaline (ρ=0.44, P=0.0306), and urea (ρ=0.43, P=0.0381). In multivariable regression models, N-acetylleucine was significantly associated with preserved temporalis [OR 1.08 (95%CI 1.01, 1.16)] and quadricep [OR 1.08 (95%CI 1.02, 1.15)] muscle volume. Quinolinate was also significantly associated with preserved temporalis [OR 1.05 (95%CI 1.01, 1.09)] and quadricep [OR 1.04 (95%CI 1.00, 1.07)] muscle volume. N-acetylserine, N-acetylcitrulline, and b-hydroxyisovaleroylcarnitine were also associated with preserved temporalis or quadricep volume. Conclusions: Metabolites defining the HPRO+NMES intervention mainly consisted of amino acid derivatives. These metabolites had strong correlations with protein intake and were associated with preserved muscle volume.

3.
Front Neurol ; 14: 1051732, 2023.
Article in English | MEDLINE | ID: mdl-36895904

ABSTRACT

Background/objective: Uncontrolled systemic inflammation after non-traumatic subarachnoid hemorrhage (SAH) is associated with worse outcomes. Changes in the peripheral eosinophil count have been linked to worse clinical outcomes after ischemic stroke, intracerebral hemorrhage, and traumatic brain injury. We aimed to investigate the association of eosinophil counts with clinical outcomes after SAH. Methods: This retrospective observational study included patients with SAH admitted from January 2009 to July 2016. Variables included demographics, modified Fisher scale (mFS), Hunt-Hess Scale (HHS), global cerebral edema (GCE), and the presence of any infection. Peripheral eosinophil counts were examined as part of routine clinical care on admission and daily for 10 days after aneurysmal rupture. Outcome measures included dichotomized discharge mortality, modified Ranked Scale (mRS) score, delayed cerebral ischemia (DCI), vasospasm, and need for ventriculoperitoneal shunt (VPS). Statistical tests included the chi-square test, Student's t-test, and multivariable logistic regression (MLR) model. Results: A total of 451 patients were included. The median age was 54 (IQR 45, 63) years, and 295 (65.4%) were female patients. On admission, 95 patients (21.1%) had a high HHS (>4), and 54 (12.0%) had GCE. A total of 110 (24.4%) patients had angiographic vasospasm, 88 (19.5%) developed DCI, 126 (27.9%) had an infection during hospitalization, and 56 (12.4%) required VPS. Eosinophil counts increased and peaked on days 8-10. Higher eosinophil counts on days 3-5 and day 8 were seen in patients with GCE (p < 0.05). Higher eosinophil counts on days 7-9 (p < 0.05) occurred in patients with poor discharge functional outcomes. In multivariable logistic regression models, higher day 8 eosinophil count was independently associated with worse discharge mRS (OR 6.72 [95% CI 1.27, 40.4], p = 0.03). Conclusion: This study demonstrated that a delayed increase in eosinophils after SAH occurs and may contribute to functional outcomes. The mechanism of this effect and the relationship with SAH pathophysiology merit further investigation.

4.
Neurocrit Care ; 38(3): 771-780, 2023 06.
Article in English | MEDLINE | ID: mdl-36577901

ABSTRACT

BACKGROUND: After subarachnoid hemorrhage (SAH), early brain injury (EBI) and delayed cerebral ischemia (DCI) lead to poor outcomes. Discovery of biomarkers indicative of disease severity and predictive of DCI is important. We tested whether leucine-rich alpha-2-glycoprotein 1 (LRG1) is a marker of severity, DCI, and functional outcomes after SAH. METHODS: We performed untargeted proteomics using mass spectrometry in plasma samples collected at < 48 h of SAH in two independent discovery cohorts (n = 27 and n = 45) and identified LRG1 as a biomarker for DCI. To validate our findings, we used enzyme-linked immunosorbent assay and confirmed this finding in an internal validation cohort of plasma from 72 study participants with SAH (22 DCI and 50 non-DCI). Further, we investigated the relationship between LRG1 and markers of EBI, DCI, and poor functional outcomes (quantified by the modified Rankin Scale). We also measured cerebrospinal fluid (CSF) levels of LRG1 and investigated its relationship to EBI, DCI, and clinical outcomes. RESULTS: Untargeted proteomics revealed higher plasma LRG1 levels across EBI severity and DCI in both discovery cohorts. In the validation cohort, the levels of LRG1 were higher in the DCI group compared with the non-DCI group (mean (SD): 95 [44] vs. 72 [38] pg/ml, p < 0.05, Student's t-test) and in study participants who proceeded to have poor functional outcomes (84 [39.3] vs. 72 [43.2] pg/ml, p < 0.05). Elevated plasma LRG1 levels were also associated with markers of EBI. However, CSF levels of LRG1 were not associated with EBI severity or the occurrence of DCI. CONCLUSIONS: Plasma LRG1 is a biomarker for EBI, DCI, and functional outcomes after SAH. Further studies to elucidate the role of LRG1 in the pathophysiology of SAH are needed.


Subject(s)
Brain Injuries , Brain Ischemia , Subarachnoid Hemorrhage , Humans , Biomarkers , Brain Injuries/complications , Cerebral Infarction/complications , Glycoproteins , Leucine
5.
Article in English | MEDLINE | ID: mdl-38389717

ABSTRACT

Delayed cerebral ischemia (DCI) is a complication seen in patients with subarachnoid hemorrhage stroke. It is a major predictor of poor outcomes and is detected late. Machine learning models are shown to be useful for early detection, however training such models suffers from small sample sizes due to rarity of the condition. Here we propose a Federated Learning approach to train a DCI classifier across three institutions to overcome challenges of sharing data across hospitals. We developed a framework for federated feature selection and built a federated ensemble classifier. We compared the performance of FL model to that obtained by training separate models at each site. FL significantly improved performance at only two sites. We found that this was due to feature distribution differences across sites. FL improves performance in sites with similar feature distributions, however, FL can worsen performance in sites with heterogeneous distributions. The results highlight both the benefit of FL and the need to assess dataset distribution similarity before conducting FL.

6.
J Neuroinflammation ; 19(1): 199, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927663

ABSTRACT

BACKGROUND: Cerebral edema (CE) at admission is a surrogate marker of 'early brain injury' (EBI) after subarachnoid hemorrhage (SAH). Only recently has the focus on the changes in CE after SAH such as delayed resolution or newly developed CE been examined. Among several factors, an early systemic inflammatory response has been shown to be associated with CE. We investigate inflammatory markers in subjects with early CE which does not resolve, i.e., persistent CE after SAH. METHODS: Computed tomography scans of SAH patients were graded at admission and at 7 days after SAH for CE using the 0-4 'subarachnoid hemorrhage early brain edema score' (SEBES). SEBES ≤ 2 and SEBES ≥ 3 were considered good and poor grade, respectively. Serum samples from the same subject cohort were collected at 4 time periods (at < 24 h [T1], at 24 to 48 h [T2]. 3-5 days [T3] and 6-8 days [T4] post-admission) and concentration levels of 17 cytokines (implicated in peripheral inflammatory processes) were measured by multiplex immunoassay. Multivariable logistic regression analyses were step-wisely performed to identify cytokines independently associated with persistent CE adjusting for covariables including age, sex and past medical history (model 1), and additional inclusion of clinical and radiographic severity of SAH and treatment modality (model 2). RESULTS: Of the 135 patients enrolled in the study, 21 of 135 subjects (15.6%) showed a persistently poor SEBES grade. In multivariate model 1, higher Eotaxin (at T1 and T4), sCD40L (at T4), IL-6 (at T1 and T3) and TNF-α (at T4) were independently associated with persistent CE. In multivariate model 2, Eotaxin (at T4: odds ratio [OR] = 1.019, 95% confidence interval [CI] = 1.002-1.035) and possibly PDGF-AA (at T4), sCD40L (at T4), and TNF-α (at T4) was associated with persistent CE. CONCLUSIONS: We identified serum cytokines at different time points that were independently associated with persistent CE. Specifically, persistent elevations of Eotaxin is associated with persistent CE after SAH.


Subject(s)
Brain Edema , Subarachnoid Hemorrhage , Biomarkers , Brain Edema/diagnostic imaging , Brain Edema/etiology , Cytokines , Humans , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/diagnostic imaging , Tumor Necrosis Factor-alpha
7.
Neurocrit Care ; 37(3): 724-734, 2022 12.
Article in English | MEDLINE | ID: mdl-35799091

ABSTRACT

BACKGROUND: Aneurysmal subarachnoid hemorrhage (aSAH) leads to a robust systemic inflammatory response. We hypothesized that an early systemic glycolytic shift occurs after aSAH, resulting in a unique metabolic signature and affecting systemic inflammation. METHODS: Control patients and patients with aSAH were analyzed. Samples from patients with aSAH were collected within 24 h of aneurysmal rupture. Mass spectrometry-based metabolomics was performed to assess relative abundance of 16 metabolites involved in the tricarboxylic acid cycle, glycolysis, and pentose phosphate pathway. Principal component analysis was used to segregate control patients from patients with aSAH. Dendrograms were developed to depict correlations between metabolites and cytokines. Analytic models predicting functional outcomes were developed, and receiver operating curves were compared. RESULTS: A total of 122 patients with aSAH and 38 control patients were included. Patients with aSAH had higher levels of glycolytic metabolites (3-phosphoglycerate/2-phosphoglycerate, lactate) but lower levels of oxidative metabolites (succinate, malate, fumarate, and oxalate). Patients with higher clinical severity (Hunt-Hess Scale score ≥ 4) had higher levels of glyceraldehyde 3-phosphate and citrate but lower levels of α-ketoglutarate and glutamine. Principal component analysis readily segregated control patients from patients with aSAH. Correlation analysis revealed distinct clusters in control patients that were not observed in patients with aSAH. Higher levels of fumarate were associated with good functional outcomes at discharge (odds ratio [OR] 1.76, 95% confidence interval [CI] 1.15-2.82) in multivariable models, whereas higher levels of citrate were associated with poor functional outcomes at discharge (OR 0.36, 95% CI 0.16-0.73) and at 3 months (OR 0.35, 95% CI 0.14-0.81). No associations were found with delayed cerebral ischemia. Levels of α-ketoglutarate and glutamine correlated with lower levels of interleukin-8, whereas fumarate was associated with lower levels of tumor necrosis factor alpha. CONCLUSIONS: Aneurysmal subarachnoid hemorrhage results in a unique pattern of plasma metabolites, indicating a shift toward glycolysis. Higher levels of fumarate and lower levels of citrate were associated with better functional outcomes. These metabolites may represent targets to improve metabolism after aSAH.


Subject(s)
Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/complications , Glutamine , Ketoglutaric Acids , Glycolysis , Fumarates , Citrates
8.
Neurocrit Care ; 37(3): 660-669, 2022 12.
Article in English | MEDLINE | ID: mdl-35761128

ABSTRACT

BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is the second most prevalent subtype of stroke and has high mortality and morbidity. The utility of radiographic features to predict secondary brain injury related to hematoma expansion (HE) or increased intracranial pressure has been highlighted in patients with ICH, including the computed tomographic angiography (CTA) spot sign and intraventricular hemorrhage (IVH). Understanding the pathophysiology of spot sign and IVH may help identify optimal therapeutic strategies. We examined factors related to the spot sign and IVH, including coagulation status, hematoma size, and location, and evaluated their prognostic value in patients with ICH. METHODS: Prospectively collected data from a single center between 2012 and 2015 were analyzed. Patients who underwent thromboelastography within 24 h of symptom onset and completed follow-up brain imaging and CTA within 48 h after onset were included for analysis. Multivariate logistic regression analyses were performed to identify determinants of the spot sign and IVH and their predictive value for HE, early neurological deterioration (END), in-hospital mortality, and functional outcome at discharge. RESULTS: Of 161 patients, 50 (31.1%) had a spot sign and 93 (57.8%) had IVH. In multivariable analysis, the spot sign was associated with greater hematoma volume (odds ratio [OR] 1.02; 95% confidence interval [CI] 1.00-1.03), decreased white blood cell count (OR 0.88; 95% CI 0.79-0.98), and prolonged activated partial thromboplastin time (OR 1.14; 95% CI 1.06-1.23). IVH was associated with greater hematoma volume (OR 1.02; 95% CI 1.01-1.04) and nonlobar location of hematoma (OR 0.23; 95% CI 0.09-0.61). The spot sign was associated with greater risk of all adverse outcomes. IVH was associated with an increased risk of END and reduced HE, without significant impact on mortality or functional outcome. CONCLUSIONS: The spot sign and IVH are associated with specific hematoma characteristics, such as size and location, but are related differently to coagulation status and clinical course. A combined analysis of the spot sign and IVH can improve the understanding of pathophysiology and risk stratification after ICH.


Subject(s)
Blood Coagulation Disorders , Stroke , Humans , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Hematoma/diagnostic imaging , Hematoma/complications , Computed Tomography Angiography/methods , Tomography, X-Ray Computed/methods , Stroke/complications , Blood Coagulation Disorders/etiology , Cerebral Angiography , Predictive Value of Tests
10.
Int J Mol Sci ; 23(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35163148

ABSTRACT

Increased soluble endoglin (sENG) has been observed in human brain arteriovenous malformations (bAVMs). In addition, the overexpression of sENG in concurrence with vascular endothelial growth factor (VEGF)-A has been shown to induce dysplastic vessel formation in mouse brains. However, the underlying mechanism of sENG-induced vascular malformations is not clear. The evidence suggests the role of sENG as a pro-inflammatory modulator, and increased microglial accumulation and inflammation have been observed in bAVMs. Therefore, we hypothesized that microglia mediate sENG-induced inflammation and endothelial cell (EC) dysfunction in bAVMs. In this study, we confirmed that the presence of sENG along with VEGF-A overexpression induced dysplastic vessel formation. Remarkably, we observed increased microglial activation around dysplastic vessels with the expression of NLRP3, an inflammasome marker. We found that sENG increased the gene expression of VEGF-A, pro-inflammatory cytokines/inflammasome mediators (TNF-α, IL-6, NLRP3, ASC, Caspase-1, and IL-1ß), and proteolytic enzyme (MMP-9) in BV2 microglia. The conditioned media from sENG-treated BV2 (BV2-sENG-CM) significantly increased levels of angiogenic factors (Notch-1 and TGFß) and pERK1/2 in ECs but it decreased the level of IL-17RD, an anti-angiogenic mediator. Finally, the BV2-sENG-CM significantly increased EC migration and tube formation. Together, our study demonstrates that sENG provokes microglia to express angiogenic/inflammatory molecules which may be involved in EC dysfunction. Our study corroborates the contribution of microglia to the pathology of sENG-associated vascular malformations.


Subject(s)
Endoglin/administration & dosage , Endothelium, Vascular/pathology , Inflammation/pathology , Microglia/pathology , Neovascularization, Pathologic/pathology , Vascular Diseases/pathology , Vascular Endothelial Growth Factor A/administration & dosage , Animals , Endothelium, Vascular/immunology , Endothelium, Vascular/metabolism , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/immunology , Microglia/metabolism , Neovascularization, Pathologic/chemically induced , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/metabolism , Vascular Diseases/chemically induced , Vascular Diseases/immunology , Vascular Diseases/metabolism , Vascular Endothelial Growth Factor A/adverse effects
11.
Technol Health Care ; 30(1): 17-28, 2022.
Article in English | MEDLINE | ID: mdl-33998562

ABSTRACT

BACKGROUND: Early diagnosis of Alzheimer's disease (AD) remains challenging. It is speculated that structural atrophy in white matter tracts commences prior to the onset of AD symptoms. OBJECTIVE: We hypothesize that disruptions in white matter tract connectivity precedes the onset of AD symptoms and these disruptions could be leveraged for early prediction of AD. METHODS: Diffusion tensor images (DTI) from 52 subjects with mild cognitive impairment (MCI) were selected. Subjects were dichotomized into two age and gender matched groups; the MCI-AD group (22 subjects who progressed to develop AD) and the MCI-control group (who did not develop AD). DTI images were anatomically parcellated into 90 distinct regions ROIs followed by tractography methods to obtain different biophysical networks. Features extracted from these networks were used to train predictive algorithms with the objective of discriminating the MCI-AD and MCI-control groups. Model performance and best features are reported. RESULTS: Up to 80% prediction accuracy was achieved using a combination of features from the 'right anterior cingulum' and 'right frontal superior medial'. Additionally, local network features were more useful than global in improving the model's performance. CONCLUSION: Connectivity-based characterization of white matter tracts offers potential for early detection of MCI-AD and in the discovery of novel imaging biomarkers.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Algorithms , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Diffusion Tensor Imaging , Humans , White Matter/diagnostic imaging
12.
J Neuroinflammation ; 18(1): 277, 2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34838058

ABSTRACT

OBJECTIVE: Although COVID-19 is a respiratory disease, all organs can be affected including the brain. To date, specific investigations of brain injury markers (BIM) and endothelial injury markers (EIM) have been limited. Additionally, a male bias in disease severity and mortality after COVID-19 is evident globally. Sex differences in the immune response to COVID-19 may mediate this disparity. We investigated BIM, EIM and inflammatory cytokine/chemokine (CC) levels after COVID-19 and in across sexes. METHODS: Plasma samples from 57 subjects at < 48 h of COVID-19 hospitalization, and 20 matched controls were interrogated for the levels of six BIMs-including GFAP, S100B, Syndecan-1, UCHLI, MAP2 and NSE, two EIMs-including sICAM1 and sVCAM1. Additionally, several cytokines/chemokines were analyzed by multiplex. Statistical and bioinformatics methods were used to measure differences in the marker profiles across (a) COVID-19 vs. controls and (b) men vs. women. RESULTS: Three BIMs: MAP2, NSE and S100B, two EIMs: sICAM1 and sVCAM1 and seven CCs: GRO IL10, sCD40L, IP10, IL1Ra, MCP1 and TNFα were significantly (p < 0.05) elevated in the COVID-19 cohort compared to controls. Bioinformatics analysis reveal a stronger positive association between BIM/CC/EIMs in the COVID-19 cohort. Analysis across sex revealed that several BIMs and CCs including NSE, IL10, IL15 and IL8 were significantly (p < 0.05) higher in men compared to women. Men also expressed a more robust BIM/ EIM/CC association profile compared to women. CONCLUSION: The acute elevation of BIMs, CCs, and EIMs and the robust associations among them at COVID-19 hospitalization are suggestive of brain and endothelial injury. Higher BIM and inflammatory markers in men additionally suggest that men are more susceptible to the risk compared to women.


Subject(s)
Brain Injuries/complications , Brain Injuries/pathology , COVID-19/complications , Cytokines/blood , Endothelium/pathology , Inflammation/complications , Inflammation/pathology , Adult , Aged , Biomarkers/blood , Brain Injuries/blood , Female , Hospitalization , Humans , Inflammation/blood , Male , Middle Aged , Severity of Illness Index , Sex Characteristics , Sex Factors
13.
Front Neurol ; 12: 694996, 2021.
Article in English | MEDLINE | ID: mdl-34381415

ABSTRACT

Objective: Systemic inflammation after subarachnoid hemorrhage (SAH) is implicated in delayed cerebral ischemia (DCI) and adverse clinical outcomes. We hypothesize that early changes in peripheral leukocytes will be associated with outcomes after SAH. Methods: SAH patients admitted between January 2009 and December 2016 were enrolled into a prospective observational study and were assessed for Hunt Hess Scale (HHS) at admission, DCI, and modified Ranked Scale (mRS) at discharge. Total white blood cell (WBC) counts and each component of the differential cell count were determined on the day of admission (day 0) to 8 days after bleed (day 8). Global cerebral edema (GCE) was assessed on admission CT, and presence of any infection was determined. Statistical tests included student's t-test, Chi-square test, and multivariate logistic regression (MLR) models. Results: A total of 451 subjects were analyzed. Total WBCs and neutrophils decreased initially reaching a minimum at day 4-5 after SAH. Monocyte count increased gradually after SAH and peaked between day 6-8, while basophils and lymphocytes decreased initially from day 0 to 1 and steadily increased thereafter. Neutrophil to lymphocyte ratio (NLR) reached a peak on day 1 and decreased thereafter. WBCs, neutrophils, monocytes, and NLR were higher in patients with DCI and poor functional outcomes. WBCs, neutrophils, and NLR were higher in subjects who developed infections. In MLR models, neutrophils and monocytes were associated with DCI and worse functional outcomes, while NLR was only associated with worse functional outcomes. Occurrence of infection was associated with poor outcome. Neutrophils and NLR were associated with infection, while monocytes were not. Monocytes were higher in males, and ROC curve analysis revealed improved ability of monocytes to predict DCI and poor functional outcomes in male subjects. Conclusions: Monocytosis was associated with DCI and poor functional outcomes after SAH. The association between neutrophils and NLR and infection may impact outcomes. Early elevation in monocytes had an improved ability to predict DCI and poor functional outcomes in males, which was independent of the occurrence of infection.

14.
Neurotherapeutics ; 18(3): 1891-1904, 2021 07.
Article in English | MEDLINE | ID: mdl-33970466

ABSTRACT

Aneurysmal subarachnoid hemorrhage (aSAH) causes a robust inflammatory response which leads worse brain injury and poor outcomes. We investigated if stimulation of nicotinic acetylcholine α7 receptors (α7-AChR) (receptors shown to have anti-inflammatory effects) would reduce inflammation and improve outcomes. To investigate the level of peripheral inflammation after aSAH, inflammatory markers were measured in plasma samples collected in a cohort of aSAH patients. To study the effect of α7-AChR stimulation, SAH was induced in adult mice which were then treated with a α7-AChR agonist, galantamine, or vehicle. A battery of motor and cognitive tests were performed 24 h after subarachnoid hemorrhage. Mice were euthanized and tissue collected for analysis of markers of inflammation or activation of α7-AChR-mediated transduction cascades. A separate cohort of mice was allowed to survive for 28 days to assess long-term neurological deficits and histological outcome. Microglia cell culture subjected to hemoglobin toxicity was used to assess the effects of α7-AChR agonism. Analysis of eighty-two patient plasma samples confirmed enhanced systemic inflammation after aSAH. α7-AChR agonism reduced neuroinflammation at 24 h after SAH in male and female mice, which was associated with improved outcomes. This coincided with JAK2/STAT3 and IRAK-M activity modulations and a robust improvement in neurological/cognitive status that was effectively reversed by interfering with various components of these signaling pathways. Pharmacologic inhibition partially reversed the α7-AChR agonist's benefits, supporting α7-AChR as a target of the agonist's therapeutic effect. The cell culture experiment showed that α7-AChR agonism is directly beneficial to microglia. Our results demonstrate that activation of α7-AChR represents an attractive target for treatment of SAH. Our findings suggest that α7-AChR agonists, and specifically galantamine, might provide therapeutic benefit to aSAH patients.


Subject(s)
Inflammation Mediators/metabolism , Signal Transduction/physiology , Subarachnoid Hemorrhage/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Biomarkers/blood , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Female , Galantamine/pharmacology , Galantamine/therapeutic use , Humans , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Signal Transduction/drug effects , Subarachnoid Hemorrhage/drug therapy
15.
Cell ; 184(10): 2715-2732.e23, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33852912

ABSTRACT

Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/prevention & control , Brain Injuries, Traumatic/complications , Neuroprotection , tau Proteins/metabolism , Acetylation , Alzheimer Disease/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Biomarkers/blood , Biomarkers/metabolism , Brain Injuries, Traumatic/metabolism , Cell Line , Diflunisal/therapeutic use , Female , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Salicylates/therapeutic use , Sirtuin 1/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , tau Proteins/blood
16.
Stroke ; 52(4): 1370-1379, 2021 04.
Article in English | MEDLINE | ID: mdl-33596676

ABSTRACT

BACKGROUND AND PURPOSE: Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage negatively impacts long-term recovery but is often detected too late to prevent damage. We aim to develop hourly risk scores using routinely collected clinical data to detect DCI. METHODS: A DCI classification model was trained using vital sign measurements (heart rate, blood pressure, respiratory rate, and oxygen saturation) and demographics routinely collected for clinical care. Twenty-two time-varying physiological measures were computed including mean, SD, and cross-correlation of heart rate time series with each of the other vitals. Classification was achieved using an ensemble approach with L2-regularized logistic regression, random forest, and support vector machines models. Classifier performance was determined by area under the receiver operating characteristic curves and confusion matrices. Hourly DCI risk scores were generated as the posterior probability at time t using the Ensemble classifier on cohorts recruited at 2 external institutions (n=38 and 40). RESULTS: Three hundred ten patients were included in the training model (median, 54 years old [interquartile range, 45-65]; 80.2% women, 28.4% Hunt and Hess scale 4-5, 38.7% Modified Fisher Scale 3-4); 101 (33%) developed DCI with a median onset day 6 (interquartile range, 5-8). Classification accuracy before DCI onset was 0.83 (interquartile range, 0.76-0.83) area under the receiver operating characteristic curve. Risk scores applied to external institution datasets correctly predicted 64% and 91% of DCI events as early as 12 hours before clinical detection, with 2.7 and 1.6 true alerts for every false alert. CONCLUSIONS: An hourly risk score for DCI derived from routine vital signs may have the potential to alert clinicians to DCI, which could reduce neurological injury.


Subject(s)
Brain Ischemia/diagnosis , Brain Ischemia/etiology , Machine Learning , Subarachnoid Hemorrhage/complications , Aged , Female , Humans , Male , Middle Aged , Neurophysiological Monitoring , Risk Factors
17.
Front Pain Res (Lausanne) ; 2: 737961, 2021.
Article in English | MEDLINE | ID: mdl-35295410

ABSTRACT

COVID-19 is an ongoing pandemic with a devastating impact on public health. Acute neurological symptoms have been reported after a COVID-19 diagnosis, however, the long-term neurological symptoms including pain is not well established. Using a prospective registry of hospitalized COVID-19 patients, we assessed pain and neurological function (including functional, cognitive and psychiatric assessments) of several hospitalized patients at 3 months. Our main finding is that 60% of the patients report pain symptoms. 71% of the patients still experienced neurological symptoms at 3 months and the most common symptoms being fatigue (42%) and PTSD (25%). Cognitive symptoms were found in 12%. Our preliminary findings suggests the importance of investigating long-term outcomes and rationalizes the need for further studies investigating the neurologic outcomes and symptoms of pain after COVID-19.

18.
Neurology ; 96(4): e553-e562, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33184232

ABSTRACT

OBJECTIVE: To determine whether machine learning (ML) algorithms can improve the prediction of delayed cerebral ischemia (DCI) and functional outcomes after subarachnoid hemorrhage (SAH). METHODS: ML models and standard models (SMs) were trained to predict DCI and functional outcomes with data collected within 3 days of admission. Functional outcomes at discharge and at 3 months were quantified using the modified Rankin Scale (mRS) for neurologic disability (dichotomized as good [mRS ≤ 3] vs poor [mRS ≥ 4] outcomes). Concurrently, clinicians prospectively prognosticated 3-month outcomes of patients. The performance of ML, SMs, and clinicians were retrospectively compared. RESULTS: DCI status, discharge, and 3-month outcomes were available for 399, 393, and 240 participants, respectively. Prospective clinician (an attending, a fellow, and a nurse) prognostication of 3-month outcomes was available for 90 participants. ML models yielded predictions with the following area under the receiver operating characteristic curve (AUC) scores: 0.75 ± 0.07 (95% confidence interval [CI] 0.64-0.84) for DCI, 0.85 ± 0.05 (95% CI 0.75-0.92) for discharge outcome, and 0.89 ± 0.03 (95% CI 0.81-0.94) for 3-month outcome. ML outperformed SMs, improving AUC by 0.20 (95% CI -0.02 to 0.4) for DCI, by 0.07 ± 0.03 (95% CI -0.0018 to 0.14) for discharge outcomes, and by 0.14 (95% CI 0.03-0.24) for 3-month outcomes and matched physician's performance in predicting 3-month outcomes. CONCLUSION: ML models significantly outperform SMs in predicting DCI and functional outcomes and has the potential to improve SAH management.


Subject(s)
Brain Ischemia/diagnosis , Brain Ischemia/epidemiology , Machine Learning/trends , Subarachnoid Hemorrhage/diagnosis , Subarachnoid Hemorrhage/epidemiology , Adult , Aged , Brain Ischemia/therapy , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Retrospective Studies , Subarachnoid Hemorrhage/therapy , Time Factors , Treatment Outcome
19.
Curr Neurovasc Res ; 17(5): 652-659, 2020.
Article in English | MEDLINE | ID: mdl-33319684

ABSTRACT

BACKGROUND: Haptoglobin (Hp) binds to and facilitates clearance of heme. Compared with HP 1-1 and 1-2 genotypes, HP 2-2 has a weaker binding affinity and has been linked with increased inflammation and vasospasm after aneurysmal subarachnoid hemorrhage (SAH). OBJECTIVE: This study aims to assess levels of inflammatory cytokines in the context of different HP genotypes. METHODS: Patients were enrolled among those presenting with spontaneous aneurysmal SAH. Blood was drawn at four time points; <24 hours (T1), 24-48 hours (T2), 3-5 days (T3), and 6-8 days (T4). Blood was analyzed for levels of 41 cytokines at each time point, as well as for HP genotypes. These data were analyzed using mixed-effect models to assess the association between HP genotypes and cytokine levels. The modified Rankin Scale (mRS) score was obtained at discharge, 3 months, and 6 months. RESULTS: Fifty-seven patients were enrolled. Compared with HP 1-1 and 1-2, subjects encoding HP 2-2 had elevated levels of the following cytokines at all time points: FLT3L, IFNγ, IL-17A, TGFα, and VEGF-A. Elevations were also seen at some time points for IL-8, CSF2, FGF2, IL-7, IL-12p70, and TNFα. This study was not powered to detect differences in the functional outcome; however, there were no significant differences in dichotomized mRS scores between patients with HP 1-1/1-2 or HP 2-2. CONCLUSION: Our findings indicate that HP 2-2 genotype leads to increased proinflammatory cytokine levels compared with HP 1-1/1-2 genotypes. These data may provide guidance for further studies seeking to identify testable markers for functional prognosis or targets for treatment.


Subject(s)
Cytokines/blood , Genotype , Haptoglobins/genetics , Inflammation/genetics , Subarachnoid Hemorrhage/genetics , Adult , Aged , Biomarkers/blood , Female , Humans , Inflammation/blood , Inflammation/etiology , Male , Middle Aged , Prognosis , Retrospective Studies , Subarachnoid Hemorrhage/blood , Subarachnoid Hemorrhage/complications
20.
Sci Rep ; 10(1): 21002, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273497

ABSTRACT

The gut microbiome is fundamental in neurogenesis processes. Alterations in microbial constituents promote inflammation and immunosuppression. Recently, in immune-oncology, specific microbial taxa have been described to enhance the effects of therapeutic modalities. However, the effects of microbial dysbiosis on glioma are still unknown. The aim of this study was to explore the effects of glioma development and Temozolomide (TMZ) on fecal microbiome in mice and humans. C57BL/6 mice were implanted with GL261/Sham and given TMZ/Saline. Fecal samples were collected longitudinally and analyzed by 16S rRNA sequencing. Fecal samples were collected from healthy controls as well as glioma patients at diagnosis, before and after chemoradiation. Compared to healthy controls, mice and glioma patients demonstrated significant differences in beta diversity, Firmicutes/Bacteroides (F/B) ratio, and increase of Verrucomicrobia phylum and Akkermansia genus. These changes were not observed following TMZ in mice. TMZ treatment in the non-tumor bearing mouse-model diminished the F/B ratio, increase Muribaculaceae family and decrease Ruminococcaceae family. Nevertheless, there were no changes in Verrucomicrobia/Akkermansia. Glioma development leads to gut dysbiosis in a mouse-model, which was not observed in the setting of TMZ. These findings seem translational to humans and warrant further study.


Subject(s)
Antineoplastic Agents, Alkylating/adverse effects , Brain Neoplasms/microbiology , Dysbiosis/etiology , Gastrointestinal Microbiome , Glioma/microbiology , Temozolomide/adverse effects , Adolescent , Adult , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Female , Glioma/drug therapy , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Temozolomide/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...